1,195 research outputs found

    Decompactifications and Massless D-Branes in Hybrid Models

    Full text link
    A method of determining the mass spectrum of BPS D-branes in any phase limit of a gauged linear sigma model is introduced. A ring associated to monodromy is defined and one considers K-theory to be a module over this ring. A simple but interesting class of hybrid models with Landau-Ginzburg fibres over CPn are analyzed using special Kaehler geometry and D-brane probes. In some cases the hybrid limit is an infinite distance in moduli space and corresponds to a decompactification. In other cases the hybrid limit is at a finite distance and acquires massless D-branes. An example studied appears to correspond to a novel theory of supergravity with an SU(2) gauge symmetry where the gauge and gravitational couplings are necessarily tied to each other.Comment: PDF-LaTeX, 34 pages, 2 mps figure

    D-branes and Discrete Torsion II

    Full text link
    We derive D-brane gauge theories for C^3/Z_n x Z_n orbifolds with discrete torsion and study the moduli space of a D-brane at a point. We show that, as suggested in previous work, closed string moduli do not fully resolve the singularity, but the resulting space -- containing n-1 conifold singularities -- is somewhat surprising. Fractional branes also have unusual properties. We also define an index which is the CFT analog of the intersection form in geometric compactification, and use this to show that the elementary D6-brane wrapped about T^6/Z_n x Z_n must have U(n) world-volume gauge symmetry.Comment: harvmac, 25 p

    The Landau-Ginzburg to Calabi-Yau Dictionary for D-Branes

    Get PDF
    Based on work by Orlov, we give a precise recipe for mapping between B-type D-branes in a Landau-Ginzburg orbifold model (or Gepner model) and the corresponding large-radius Calabi-Yau manifold. The D-branes in Landau-Ginzburg theories correspond to matrix factorizations and the D-branes on the Calabi-Yau manifolds are objects in the derived category. We give several examples including branes on quotient singularities associated to weighted projective spaces. We are able to confirm several conjectures and statements in the literature.Comment: 24 pages, refs added + minor correctio

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    Solitons in Seiberg-Witten Theory and D-branes in the Derived Category

    Get PDF
    We analyze the "geometric engineering" limit of a type II string on a suitable Calabi-Yau threefold to obtain an N=2 pure SU(2) gauge theory. The derived category picture together with Pi-stability of B-branes beautifully reproduces the known spectrum of BPS solitons in this case in a very explicit way. Much of the analysis is particularly easy since it can be reduced to questions about the derived category of CP1.Comment: 20 pages, LaTex2

    Quivers from Matrix Factorizations

    Full text link
    We discuss how matrix factorizations offer a practical method of computing the quiver and associated superpotential for a hypersurface singularity. This method also yields explicit geometrical interpretations of D-branes (i.e., quiver representations) on a resolution given in terms of Grassmannians. As an example we analyze some non-toric singularities which are resolved by a single CP1 but have "length" greater than one. These examples have a much richer structure than conifolds. A picture is proposed that relates matrix factorizations in Landau-Ginzburg theories to the way that matrix factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes

    A Point's Point of View of Stringy Geometry

    Get PDF
    The notion of a "point" is essential to describe the topology of spacetime. Despite this, a point probably does not play a particularly distinguished role in any intrinsic formulation of string theory. We discuss one way to try to determine the notion of a point from a worldsheet point of view. The derived category description of D-branes is the key tool. The case of a flop is analyzed and Pi-stability in this context is tied in to some ideas of Bridgeland. Monodromy associated to the flop is also computed via Pi-stability and shown to be consistent with previous conjectures.Comment: 15 pages, 3 figures, ref adde
    • …
    corecore